A light-based, food sanitization technique successfully eliminated multiple harmful pathogens in a new study carried out by Penn State researchers.
The technique shows promise as an effective alternative to the chemical, heat and water-based antimicrobial technologies commonly used in the food industry — and could be applicable more generally in sanitized environments such as hospitals, water treatment facilities and pharmaceutical plants, according to the researchers. Despite improvements in technology and increased regulation, food contamination remains a global problem with major public health implications.
The study, recently published in the Journal of Food Engineering, revealed that targeted pulses of broad-spectrum light established a germicidal response in E. coli, Salmonella Typhimurium, Listeria monocytogenes, Bacillus cereus, Aspergillus niger spores and Penicillium roqueforti spores. The study also defined the spectrum and energy characteristics of pulsed light and found that ultraviolet radiation played an important role in the process.
Over the past two decades, the lab has applied the technique to a range of foods, including fruits, seeds, grains, cheese, milk, apple juice and multiple poultry products. The team even simulated production conditions to test the technology on eggs, using a conveyor devised to test the process in an industrial setting, with the xenon flashlamps designed to operate at commercial scale.
The team said they hope this technology will be adopted by the food industry sooner rather than later due to its strong potential to help make food safer to consume.
The team’s technique is designed to be deployed on a food conveyor, where light pulses would be applied to the product as it passes by. The treatment delivers a higher intensity of light, because it is pulsed, which results in a greater microbial reduction in a shorter period of time than conventional UV light treatment.
Source: Penn State