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A B S T R A C T

Volatile organic compounds (VOCs) gases exist as important indicators in various processes such as human
breath, food spoilage, plant disease, and industrial production, which makes VOC sensing a promising nonde-
structive detection method. Nanomaterial enabled electronic noses (e-noses) are gaining increasing attention for
their exceptional ability to distinguish between multiple VOCs. To achieve this, multiple sensors with distinct
nanomaterials are crucial for providing enough diversity for successful discrimination. Apparently if e-nose can
be implemented solely on single sensor with single common nanomaterial operating at room temperature, the
complexity and power consumption can be greatly decreased. In this study, a significant milestone is achieved as,
for the first time, a single antenna sensor coated with commercial graphene oxide, demonstrates comparable
performance to array-based e-noses, and even outperforms them in terms of the ultimate ambition of selecti-
vity—isomeric VOC classification. An impressive classification accuracy of 96.7 % is attained for multiple VOC
gases, including isomers. Additionally, the concentration of each component in VOC isomer mixtures is accu-
rately determined. Unlike conventional antenna sensors, the sensor maintains stable communication during
sensing operations. Finally, the practical feasibility of the antenna e-nose (Ant-nose) is successfully demonstrated
with a series of food quality assessments.

1. Introduction

VOC gas sensing, as a promising nondestructive detection technology
finds diverse applications in agriculture [1], environmental protection
[2], fruit freshness [3], meat spoilage [4], disease diagnosis [5], and
public safety [6]. In practical applications, diverse VOCs may share
similar characteristics but have distinct levels of toxicity or impact on
humans and the environment [7], necessitating discrimination between
multiple VOC analytes. Additionally, it is common for multiple VOCs to
coexist as indicators, evident in scenarios such as postharvest fruit
damage [8], fruit ripening [3,9], and plant disease diagnosis [10].
Furthermore, the real-life detection process can be complicated by po-
tential interference from irrelevant VOCs. Faced with these challenges,
depending on sensors that detect only a specific VOC is impractical.
Reliable and robust detection is achieved only through the collective
analysis of a panel of VOCs, creating distinct ‘fingerprints’ of the sample
under test.

To meet practical requirements, the nanomaterials-enabled elec-
tronic nose (e-nose), inspired by mammalian olfaction [11], stands out

as a promising biomimetic device [12–14]. Comprising an array of
sensors, each coated with a distinct nanomaterial, the e-noses demon-
strate affinity to a range of VOCs, yielding diverse response levels. These
responses are collectively processed using a pattern recognition algo-
rithm, resembling the human brain [4]. Attributed to the variety of the
sensors in e-nose, profiling the distinct pattern and classification of
analytes under test can be achieved. Various transducers and sensitive
materials have been extensively explored and applied for e-nose. Taking
some state-of-art works as example, Capman et al. introduced a gra-
phene e-nose with 432 sensors, functionalized with 36 distinct re-
ceptors, achieving an 89 % discrimination accuracy among 6 different
VOCs at 4 concentrations each [15]. Similarly, Kybert et al. introduced a
graphene e-nose with 56 sensors functionalized by 4 DNA oligomers,
visually separating 8 chemical vapors [16]. Weerakkody et al. presented
a five-element biohybrid e-nose effectively discriminating 4 VOCs [11].
Wang et al. introduced a semiconductor metal oxide (SMO) e-nose with
5 sensors made up of 5 types of zinc oxide, achieving 99 % classification
accuracy among 6 VOCs [17].

However, use of multiple transducers and sensitive nanomaterials in
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e-nose significantly increases complexity, power consumption, and
overall size. To ensure sufficient diversity for profiling the fingerprint
pattern of analytes, many sensors coated with either distinct nano-
materials [18] or the same base nanomaterial functionalized differently
[15,16,19], are required thus necessitate complex and time-consuming
preparation. Multiple sensors also necessitate additional supporting
circuitry and infrastructure for powering and multichannel data acqui-
sition [13]. For some SMO and micro-LED based e-noses, extra thermal
activation or photoactivation also adds up to the power consumption
[18,19]. The breakdown or malfunction of a single element in the system
can lead to the failure of the entire system. In practical applications, such
as wireless sensor networks (WSNs) requiring large-scale sensor
deployment, the application of e-noses is hindered by cost and
complexity. Moreover, the feasibility of the above-mentioned e-noses in
real-life scenarios remains unverified, with isomer detection achieved
by only one graphene e-nose [15]. Differentiating between VOC isomers,
as the ultimate goal for e-nose selectivity, remains a challenging task due
to the exceptionally high molecular similarities.

Hence if we can achieve e-nose functionality with single sensor and a
common nanomaterial, the system can be significantly simplified,
leading to a drastic reduction in complexity, power consumption, and
overall size. To this aim, the cross-sensitivity of nanomaterial towards
multiple VOCs is necessary. Graphene oxide (GO), as a crucial member
of two-dimensional (2D) materials, meets the criteria of cross-
sensitivity, room temperature operation, and commercial availability,
making it popular for VOC sensing [20–23]. Apart from nanomaterial,
transducer is another important composition of e-nose. The antenna
sensor, a key member of microwave sensors, offers the potential for a
single-sensor-based e-nose due to its inherent multiple resonances.
These resonances, separated by several gigahertz (GHz) within the mi-
crowave band, can enable the profiling of distinct fingerprints for
different analytes. Moreover, the IoT’s rapid growth requires sensor
nodes with both sensing and communication functions [24,25]. An

antenna sensor simplifies design by eliminating the need for an extra
antenna [26]. However, existing antenna sensors have limitations, such
as communication performance always get affected during sensing,
necessitating additional compensation circuitry, as proposed by our
group [27,28]. It’s essential to note that no research on an
antenna-based e-nose has been conducted thus far.

In this work, we introduce the Ant-nose for the first time—a single
antenna-based e-nose. Deposited with commercial graphene oxides
without functionalization as a cross-selective receptor as illustrated in
Fig. 1, the Ant-nose can be prepared through a facile procedure. It
achieves VOC discrimination and concentration regression, even in the
presence of isomers and isomer blends at the ppm level. By leveraging
the reflection coefficient at various resonances across an ultra-wide
microwave frequency spectrum, the Ant-nose generates effective
multidimensional ’fingerprints’ for VOC discrimination. In our mea-
surements, it accurately differentiates six VOC types, including 2 pairs of
isomers, with a remarkable 96.7 % classification accuracy. Additionally,
the Ant-nose determines concentrations in binary VOC isomer mixtures
with an R-squared value exceeding 0.98. Its stable communication
capability during VOC detection further highlights its effectiveness.
Finally, the Ant-nose demonstrates its feasibility in real-life scenarios,
including measurements of fruit and meat freshness, and apple me-
chanical damage detection. Some other potential applications are also
illustrated in Fig. 1. This Ant-nose showcases the possibility of achieving
multi-sensor based e-nose functionality using a single sensor and simple
procedures, promising potential for next-gen e-nose development.

2. Experimental section

2.1. Fabrication and measurement of antenna

The proposed novel Ant-nose is designed with Ansys® high-
frequency structure simulator (HFSS). Fig. 1 shows the geometric

Fig. 1. Architecture, composition, and potential applications of the proposed Ant-nose.
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topology of the Ant-nose. The integration of sensing and communication
functions is achieved on a coplanar waveguide (CPW) fed PCB board
with an overall size of 33×33 mm. Design principle is detailed in Section
3.4. Detailed dimensional information is given in Fig. S1 and Table S1.
All dimensional parameters are kept to one decimal place for ease of
mechanical processing. Then the antenna was etched on a Roger®
RO4003C copper clad laminate with a dielectric constant of 3.38 and
thickness of 1.524 mm. The etching process, carried out with the LPKF®
ProtoMat S64 (Fig. S2), used a cost-effective milling method to produce
precise structures as small as 100 µm. Then the fabricated antenna was
polished with sandpaper to remove potential surface oxidation layer,
and a SMA connector was soldered at the CPW port. Measurement of
reflection coefficient was done with a Rohde & Schwarz® Vector
Network Analyzer ZVA67. As shown in Fig. S3, ultra-wide microwave
band from 1 to 8 GHz was swept. The radiation measurements were
conducted using a near-field multi-probe system, specifically our MVG®
StarLab (Fig. S4).

2.2. Sensitive nanomaterial coating

The sensitive layer was made of graphene oxide/Nafion composite as
illustrated in Fig. 1. Nafion serves as both a backbone for supporting and
binding GO together, as well as reducing charge transfer resistance to
facilitate VOC molecule detection [29,30]. Other advantages of GO and
Nafion are detailed in Note S1. 4 mL GO dispersion in water with a
concentration of 4 mg mL− 1 was mixed with 1 mL anhydrous ethanol
and 2 mL Nafion® perfluorinated resin solution (5 wt%), followed by
30 minutes ultrasonication. Subsequently, a tailored mask was affixed to
the Ant-nose. Then 0.2 mL above mentioned dispersion was
spray-coated onto Ant-nose under 0.2 MPa pressure and 10 cm distance.
The Ant-nose was subsequently left in ambient condition for 40 minutes
to evaporate solvent, resulting in the formation of a thin sensing mem-
brane. To assess the sensing performance using an alternative sensitive
material, 16 mg graphite was mixed with 5 mL anhydrous ethanol and
2 mL Nafion® perfluorinated resin solution (5 wt%). This mixture un-
derwent a 72 hour magnetic stirring process followed by 2 hours of
ultrasonication. Then the drop coating was performed with 0.1 mL
graphite-Nafion solution, followed by 30 minutes evaporation in
ambient condition. Fig. S5 shows the photographs of Ant-nose after
coating. All above-mentioned chemicals and solvents are purchased
from Sigma–Aldrich® and used without further purification.

2.3. VOC sensing with ant-nose

The complete experimental setup is shown in Fig. 2A. A gas tight
container (EM-Tec Save-Storr, from Micro-to-Nano®) with available
volume of 10 L was used as our home-made gas chamber, similar like
setups used in other researches [31–33]. To establish a connection be-
tween the VNA and Ant-nose, a coaxial cable was secured through a hole
in the chamber’s side wall. A 5200 rpm fan is placed inside chamber to
stir and homogenize VOC gas distribution. The Ant-nose in chamber is
connected to a vector network analyzer (VNA) via the coaxial cable. To
stabilize conditions inside the chamber, the fan is switched on and the
lid and valve of the chamber are closed 10 minutes before each mea-
surement. During measurement anhydrous VOC liquid including meth-
anol (MeOH), 1-proponal (PrOH), 2-proponal (IPA), 2-butanol (2BuOH),
1butanol (BuOH), and ethanol (EtOH) (>99.5 %, from Sigma-Aldrich®)
with specific volume are injected with precise gas tight sampling syringe
(10–100 µL, from Hamilton® and SGE®) through the ball valve of gas
chamber. Note that the inside diameter of the valve is almost the same as
outside diameter of the syringe so that leakage during injection is
minimized. With known gas chamber volume, the relationship between
the VOC concentration and the volume of the VOC liquid can be found
using specific equation [31–34]. Detailed volume-concentration calcu-
lations are given in Note S2 and Table S2. The VNA, controlled by
MATLAB code running on a laptop, measures and stores reflection

coefficient (S11) of the Ant-nose every second. Within 1–8 GHz micro-
wave frequency band, totally 1333 frequency points are used. To extract
features from measurement with higher dimensionality, we use both
real and imaginary parts of S11, as depicted in Fig. S3. Every time after
the injection of VOC liquid the valve is closed immediately, then after
10 mins measurement the lid of chamber is opened to refresh the
chamber with a fume hood. All experiments were conducted under
ambient conditions at about 20◦C and 40 % humidity, similar conditions
to our group’s previous work [35,36]. For each concentration, the
response is calculated by averaging five repeated measurements.

3. Results and discussion

3.1. Discrimination of individual VOCs including isomers

For individual VOC tests, concentrations ranging from 200 ppm to
1000 ppm (with 200 ppm interval) were measured for each of the six
different VOCs. After measurements, we select five peaks/valleys in real
part (Re2–2.77 GHz, Re5–4.67 GHz, Re6–4.93 GHz, Re9–6.69 GHz,
Re10–6.83 GHz) and six peaks/valleys in imaginary part
(Im2–2.61 GHz, Im3–2.87 GHz, Im5–4.45 GHz, Im6–4.81 GHz,
Im7–5.08 GHz, Im10–6.78 GHz) that exhibit the highest variation as
shown in Fig. S3. This totally yields 11 features collected at distinct
frequencies. The average response of the last 10 seconds of measure-
ment at each frequency point was used as a feature. Fig. S6 showcases
the response curves at 11 selected frequencies for 6 VOCs. Notably, some
curves show an increase with concentration, while others exhibit a
decrease. To visualize the unique response fingerprint for the 6 VOCs,
response curves are plotted in polar coordinates in Fig. 2B, with 11
features represented by angles and different concentrations distin-
guished by colors. These fingerprints intuitively discriminate between
different VOC types. In summary, the study involved measuring six
distinct VOCs, with five different concentrations tested for each VOC,
resulting in 30 observations. Each observation was characterized by 11
features. To address potential limitations due to limited data, augmen-
tation techniques, specifically the Synthetic Minority Over-sampling
Technique (SMOTE), were employed (detailed in Note S3). Through
SMOTE, the total number of observations was increased to 120. To
identify different VOC types quantitatively, the eXtreme Gradient
Boosting (XGBoost) machine learning algorithm was applied (depicted
as Fig. 2C, detailed in Note S3).

To reduce less informative features, we performed principal
component analysis (PCA) before applying XGBoost. Subsequently, the
first five principal components (PCs), explaining 99.9 % of the variance,
were used as input for XGBoost (see Note S3). In the analysis of four VOC
types (MeOH, PrOH, BuOH, EtOH) without isomers, the 3D PCA plot
(Fig. 2D) exhibits clear separability, with data points of the same VOC
type aligning along a straight line, demonstrating the Ant-nose’s
discriminative capability. Leveraging the XGBoost model with 75 % of
the data as training data and reserving 25 % as test data, we attained a
100 % classification accuracy and a 97.5 % cross-validation accuracy for
the four VOCs without isomers (first two panels of Fig. 2E). Leave-one-
out cross-validation (LOOCV) was employed due to limited sample
quantity [37](detailed in Note S3). In addition to classification, we
conducted multivariate linear regression of PC1-PC4 against the con-
centration of each VOC gas to predict concentrations (see Note S4).
LOOCV was used to validate the regression performance. The final panel
of Fig. 2E demonstrates that predicted concentrations in cross-validation
closely align with true concentrations. Calculated R-squared and
adjusted R-squared values surpass 0.99 for all VOCs, indicating strong
linearity between the Ant-nose’s response and concentrations in a
multidimensional space.

The inclusion of isomers complicates distinguishing between multi-
ple VOCs. The six VOCs in our study are MeOH, PrOH, BuOH, 2-BuOH,
IPA, and EtOH, wherein PrOH and IPA are isomers, as are BuOH and 2-
BuOH. In Fig. S7, the 3D PCA plot for all six VOC types reveals slight
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Fig. 2. A) Experimental setup and specifications for VOC vapor sensing. B) Fingerprint of six VOC gases, featuring 11 real and imaginary S11 features at various
frequencies. C) Schematic diagram of the eXtreme Gradient Boosting (XGBoost) algorithm. D) 3D plot of the first 3 principal components from PCA results for four
VOCs without isomers. E) Classification and concentration prediction results for four VOCs without isomers, including identification, cross-validation, and linear
regression. F) Results for six VOCs with isomers, including identification, cross-validation, and linear regression. G) Sensor response to 500 ppm EtOH exposure with
the Ant-nose coated with different sensitive materials.
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overlap among scatter points corresponding to IPA, BuOH, and 2-BuOH.
Hence, relying solely on PCA results is insufficient for discriminating
effectively, prompting us to use the first 5 PCs for the XGBoost classifi-
cation model. As depicted in the first two panels of Fig. 2F, considering
all six VOC types, we achieve a satisfactory classification accuracy of
96.7 % and a cross-validation accuracy of 91.7 %. Notably, the second
panel of Fig. 2F reveals a slight cross-sensitivity of our sensor towards
IPA, BuOH, and 2-BuOH, consistent with observations in the 3D PCA
plot (Fig. S7), where these VOCs exhibit overlapping tendencies. In the
third panel of Fig. 2F, cross-validation results for concentration pre-
diction show R-squared and adjusted R squared values exceeding 0.99
for all six VOCs. These results emphasize the sensor’s exceptional
capability to accurately differentiate between various VOCs, even in the
presence of isomers. Our proposed Ant-nose leverages the intrinsic cross-
sensitivity of the nanomaterial, providing additional advantages to in-
crease feature dimensionality. Moreover, the versatility of the Ant-nose
was demonstrated by using graphite (Fig. 2G) as an alternative chem-
iresistive material (see Note S6).

Additionally, the influence of humidity and short-term repeatability
was experimentally investigated. The response of Ant-nose (Im10) to
200 ppm and 400 ppm 2-BuOH at different humidity levels is shown in
Fig. 3A. As RH increases, the error bars, representing the standard de-
viation of five measurements, begin to overlap between two concen-
trations. This indicates that higher humidity increases measurement
uncertainty. Thus, at low RH (21 % - 55 %), the Ant-nose maintains a
relatively stable response, but at higher RH, the uncertainty is too high
to discriminate between adjacent concentrations. Besides, our sensor
showed good short-term repeatability (Fig. 3B) despite slight humidity
fluctuations(Fig. S8). Finally, the theoretical limit of detection (LOD) for
VOCs was calculated using the formula: LOD= 3× σ/S [31,38], where σ
represents the standard deviation at zero concentration (1.7 × 10− 4, see
Fig. 3C) and S denotes the average sensitivity from 0 to 200 ppm,
approximated due to non-linear responses in Fig. S6. The LOD value of
each VOC was determined by comparing and finding the lowest esti-
mated LOV over 11 feature frequencies, as highlighted in Table 1, and
the LOD of Ant-nose is comparable to conventional sensor array based
e-nose systems (detailed in Note S5 and Table S5).

3.2. Discrimination of VOC isomer mixture

In this section, our goal is to determine the concentration of each
component in binary VOC isomer gas mixtures, specifically the 1/2-
propanol and 1/2-butanol mixtures. Existing research on isomeric
VOC identification with complex array-based e-noses has been limited to
discriminating individually present isomers or between binary mixtures
with selected ratios (e.g., 1:1 or 1:3), without providing accurate con-
centration information for each VOC in the binary mixture [39,40]. To
address this challenge, we select a total of 12 frequencies
(Re2–2.77 GHz, Re5–4.67 GHz, Re6–4.93 GHz, Re7–5.31 GHz,
Re9–6.69 GHz, Re10–6.83 GHz, Im2–2.61 GHz, Im3–2.87 GHz,

Im5–4.45 GHz, Im6–4.81 GHz, Im7–5.08 GHz, Im10–6.78 GHz) for
regression analysis of both 1/2-propanol and 1/2-butanol mixtures, as
presented in Figs. S9 and S10. Given the complexity of this task, more
features are required compared to the previous section that discrimi-
nated single VOCs. For each of the 12 frequency points, we select 100
data points as features, yielding 12 vectors with 100 elements each.
These elements represent sequential measurements taken over the first
300 seconds, with one point recorded every 3 seconds. The arrangement
of the 100 points in each vector follows the chronological order of the
testing time. Due to the limited sample quantity, we implemented
SMOTE for both components in the binary mixture. Initially, the original
measurements comprised 25 observations, with each component
measured from 100 ppm to 500 ppm, at intervals of 100 ppm. Following
SMOTE for both VOC components, the total number of observations
increased to 175. Given the above sequence of vectors as input, a
Transformers model-based regressor can be a suitable candidate for
capturing the dependencies and patterns within and across the fre-
quency points and the time-ordered measurements. A schematic dia-
gram in Fig. 4A illustrates the structure of our custom Transformer
regressor (detailed in Note S3).

We used mean squared error (MSE) as the evaluation metric and loss
function during the model training process, as plotted in the third panel
of Fig. 4B. From the training loss curve, we can conclude that our model
is learning to predict as expected. The testing loss curve shows that the
generalization performance also increasing during training. Further-
more, as shown in the first two panel of Fig. 4B, most points align on the
diagonal, confirming accurate predictions by the trained model. The
calculated R squared values are 0.982 and 0.989 for 1-Propanol and 2-
Propanol in the mixture, respectively. Moreover, an additional experi-
ment involving a binary mixture of 1-Butanol and 2-Butanol was also
conducted. In third panel of Fig. 4C, the loss function stabilizes at very
low values after 150 epochs for both the test and training sets in the
experiment. As shown in the first two panels of Fig. 4C, the predictions
closely match the actual concentrations, resulting in calculated R-
squared values of 0.986 and 0.983 for 1-Butanol and 2-Butanol,
respectively. These findings underscore the Ant-nose’s precision in

Fig. 3. A) Response to 2-BuOH (200 and 400 ppm) across humidity levels; error bars show standard deviation of five measurements. B) Short-term repeat test of the
proposed Ant-nose upon exposure of 200 ppm 2-BuOH. C) Noise level at zero VOC concentration.

Table 1
Estimated LOD, all LOD value in ppm.

MeOH PrOH IPA 2-BuOH BuOH EtOH

LOD (Re2) 67.8 30.2 34.8 46.2 47.7 126.6
LOD (Re5) 47.8 22.5 20.9 26.9 30.8 180.9
LOD (Re6) 42.2 17.4 19.4 24.7 27.9 55.8
LOD (Re9) 72.3 28.7 35.2 45.0 50.0 95.8
LOD (Re10) 77.5 41.9 42.4 48.7 64.7 146.8
LOD (Im2) 111.4 47.5 55.9 75.9 87.5 165.0
LOD (Im3) 105.7 49.3 50.2 69.5 80.5 175.2
LOD (Im5) 108.2 51.7 62.9 71.0 85.0 168.1
LOD (Im6) 54.7 15.2 16.3 19.4 21.6 63.4
LOD (Im7) 65.9 29.6 32.5 41.4 44.3 143.2
LOD (Im10) 74.4 18.8 20.4 25.4 29.2 123.5
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determining the concentration of each component in binary VOC isomer
gas mixtures.

3.3. Food quality measurement with Ant-nose

Real-life applications pose greater complexity than laboratory set-
tings, as multiple VOC markers can coexist and undergo simultaneous
variations in a single event [3,8–10]. While sensor-array-based e-noses
have demonstrated the ability to distinguish individual VOCs, their
practical feasibility in real-world scenarios remains unvalidated [15,16,
18]. Food quality inspection is a crucial real-life application of VOC
detection due to the strong link between food quality and the compo-
sition of released aromas or flavors [41–43]. Traditional food evaluation
is costly and labor-intensive, relying on manual inspection [44,45],
while VOC detection offers a nondestructive, cost-effective alternative
for efficient evaluation. To validate our Ant-nose in real-life scenarios,
we measured food freshness (grape, strawberry, and pork) and detected
mechanical damage in apples.

Firstly, damage in apples is assessed. Throughout the postharvest
supply chain, factors like impact, compression, and vibration can easily
result in fruit damage. Once got mechanical damage, the market value of
fruits decreases not only due to oxidation browning, water losses and
decline in firmness [46] but also because the fruits become more
vulnerable to bacterial and fungal infections [47]. According to some
research [9,48,49], noticeable changes in the concentration of multiple
VOCs can be observed once fruits undergo damages. Therefore, VOC
detection plays a vital role in fruit damage evaluation, contributing to
optimize the fruit storage, transportation, and sales strategies. In our
measurement, to simulate the compression damage incurred by static
loads on apples in postharvest supply chain, artificial damage was
induced using a small hammer. Four circular regions on each apple were
subjected to similar pressure within the equatorial zone of the fruits as

denoted by the white circles in Fig. 5A. It is important to note that this
pressure did not breach the skin of the apples. Five apples were damaged
and another five were left untouched to serve as the control group as
shown in Fig. 5B. All apples from the same brand were bought together
at the local supermarket. Subsequently, two sets of apples were placed at
10◦C for a duration of 12 hours before analysis. Following this storage
period, the areas of the apple that had undergone pressure exhibited a
darker hue compared to the surrounding regions. Then all apple samples
were individually assessed. Each apple underwent an 8-minute mea-
surement with our Ant-nose, followed by an additional 8 minutes for gas
chamber purging. The heatmaps in Figs. 5C and 5D, representing eight
distinct features (re2, re5, re6, re9, im3, im5, im6, im7) with the most
significant variations, effectively demonstrate the differentiation be-
tween the two groups. Moreover, the t-SNE analysis in Fig. 5E further
confirms this distinction in a two-dimensional feature space, high-
lighting the sensor’s ability to discern apples with damage based on VOC
release.

Besides damage in fruit, given that each type of fruit possesses a
distinctive aroma comprising hundreds of VOCs, and considering that
various categories of VOCs, including alkenes, esters, aldehydes, and
alcohols, are linked to fruit freshness, the assessment of VOCs has
emerged as a pivotal approach for freshness inspections [3]. In our
study, strawberries and grapes were used for fruit freshness evaluation.
Fruits from the same brand were purchased both five days and one day
prior to the measurement, stored at 10◦C. After five days, four straw-
berries exhibited varying darkening, while the last one exhibited no
noticeable change, revealing ripeness variations even within the same
fruit box (Fig. 6A). Subsequently, employing the same measurement
procedure as for damaged apples, we assessed ten strawberries. Figs. 6B
and 6C illustrate clear differences between fresher and five-day-old
strawberries. T-SNE analysis in Fig. 6E further confirmed the distinc-
tion. Similar assessments were made for two grape groups (Figs. 7A and

Fig. 4. A) Schematic diagram of the transformer model used in this work. B) Regression result of 1/2-Propanol mixture. Top: concentration prediction of 1-Propanol.
Middle: concentration prediction of 2-Propanol. Bottom: model MSE as a function of number of epochs. C) Regression result of 1/2-Butanol mixture. Top: con-
centration prediction of 1-Butanol. Middle: concentration prediction of 2-Butanol. Bottom: model MSE as a function of number of epochs.
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7B), revealing size differences in the older grapes. Heatmaps (Figs. 7C
and 7D) and t-SNE (Fig. 7E) analysis showed distinct separations.

Finally, we extended our assessment to meat freshness—another
critical application of VOC detection [50]. We assessed meat freshness
by cutting two groups of pork (bought 5 days ago and 1 day ago) into
small pieces (Figs. 8A and 8B). The heatmap in Figs. 8C and 8D repre-
sents eight selected features, and the t-SNE result in Fig. 8E shows clear
but less pronounced separation than other tests. This may be due to the
nanomaterial used here being less responsive to VOCs associated with
pork freshness.

3.4. Ant-nose communication stability during sensing

In Fig. 9A, the function of each component of the Ant-nose is

illustrated, highlighted by different colored boxes. Detailed information
about the equivalent function within each box is provided in Note S7.
Fig. 9B shows the reflection coefficient of the Ant-nose during 1000 ppm
EtOH detection, with different-colored curves for various operation
times. Notably, the amplitudes of the 2 resonances at 2.77 GHz and
4.76 GHz increase with time as circled in the black boxes, while the
amplitude of the communication resonance (5.72 GHz) remains con-
stant. The communication resonance at 5.72 GHz exhibits a − 10 dB
bandwidth of 380 MHz (5.53–5.91 GHz), effectively covering the world
widely used 5.8 G ISM band (5.725–5.875 GHz) [51–53]. In Fig. 9C,
examining resonance amplitude stability during the detection of six
VOCs at different concentrations reveals that unlike the other 2 reso-
nances, the communication resonance remains unchanged, demon-
strating the Ant-nose’s fixed communication band unaffected by VOC

Fig. 5. A) Apples with artificial damage on surface denoted by the white circles. B) Another five healthy apples used as the control group. C) Heatmap made up of
eight selected features for healthy apples. D) Heatmap for damaged apples. E) t-SNE results with clear separation between two groups of apples.

Fig. 6. A) Strawberries bought 5 days before measurement. B) Strawberries bought 1 day before measurement. C) Heatmap made up of eight selected features for
one-day ago strawberries. D) Heatmap for five-days ago strawberries. E) t-SNE results with clear separation between two groups of strawberries.

Y. Dang et al. Sensors and Actuators: B. Chemical 419 (2024) 136409 

7 



sensing operations.
Fig. 9D displays the 3D radiation pattern at 5.72 GHz with a

measured realized gain of 5 dBi. The 2D radiation pattern in Fig. 9E
agrees well with simulation. In Fig. 9F, simulated realized gain variation
with nanomaterial characteristic at the communication frequency keep
stable, emphasizing minimal impact on communication performance.
Furthermore, the electric field distribution on the Ant-nose surface is
shown in Fig. 9G to unravel the mechanism behind the high isolation
between communication and sensing. At the communication resonance
(5.72 GHz), energy concentrates on the slot dipole, while at 2.77 GHz
and 4.76 GHz, it centers on interdigital finger (IDF1), where the nano-
material is, indicating resonance induction by the RLC resonator. In
summary, our dual-functional Ant-nose, operating independently for
communication and sensing with a shared input port on a compact PCB,

ensures consistent wireless performance for practical applications.

4. Conclusion

This work highlights the efficacy of a single antenna sensor coated
with commercial nanomaterial, offering comparable performance and
superior VOC isomer detection compared to sensor arrays. Utilizing a
single microwave multi-resonant antenna with commercial GO and
Nafion, our Ant-nose operates at room temperature, streamlining the
system by eliminating the need for multiple sensors, various nano-
materials, multichannel data acquisition, additional supporting circuitry
and heaters.

A diverse set of features in the reflection coefficient of Ant-nose is
collected across an ultra-wide microwave band to ensure a

Fig. 7. A) Grapes bought 5 days before measurement. B) Grapes bought 1 day before measurement. C) Heatmap made up of eight selected features for one-day ago
Grapes. D) Heatmap for five-days ago Grapes. E) t-SNE results with clear separation between two groups of Grapes.

Fig. 8. A) Pork bought 5 days before measurement. B) Pork bought 1 day before measurement. C) Heatmap made up of eight selected features for one-day ago Pork.
D) Heatmap for five-days ago Pork. E) t-SNE results with clear separation between two groups of Pork.
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comprehensive VOC analyte fingerprint. Leveraging the XGBoost clas-
sification model, we achieved 100 % identification accuracy for four
VOCs without isomers (MeOH, PrOH, BuOH, and EtOH), and 96.7 % for
six VOCs with isomers (MeOH, PrOH, IPA, 2-BuOH, BuOH, and EtOH).
Additionally, precise concentration estimates are obtained for each VOC
using linear regression with R-squared values surpassing 0.99.
Furthermore, our custom Transformer model accurately determined the
concentration of elements in binary VOC isomer mixtures, achieving R-
squared values greater than 0.98 for both 1/2-propanol and 1/2-butanol
mixtures. Table S4 compares the performance of our Ant-nose with
state-of-the-art sensor array-based e-noses, showcasing that Ant-nose’s
simplicity does not compromise performance. In terms of VOC isomer
(even blend) identification and classification accuracy, Ant-nose out-
performs other array-based e-noses.

Afterwards a series of real-life application scenarios, where multiple
VOC species coexist, such as storage of grape, strawberry and pork, and
mechanical damage of apple in supply chain, are checked separately.
The clear visual separation between test and control group validates the
feasibility of Ant-nose in practical complex applications. As a commu-
nication antenna, Ant-nose exhibits highly stable communication per-
formance in terms of both frequency band and realized gain, regardless
of the type or concentration of the VOC under test. Thus, our Ant-nose

offers a new promising solution to develop low-cost and facile e-nose
following simple procedure without compromising performance, which
signifies an important step toward practical application of e-nose in IoT
and wireless sensor network.
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Fig. 9. A) Structure of the proposed novel microstripe antenna, where the corresponding function/equivalent structure of the microstrip configuration is highlighted
by different colored boxes. B) Reflection coefficient (|S11|) of the proposed Ant-nose during the detection of 1000 ppm EtOH, illustrating four distinct sensing
operation times represented by curves in different colors. C) Amplitude of the reflection coefficient at three different resonances varying with VOC concentration. Six
lines in the same color represent six different VOC types (MeOH, PrOH, IPA, BuOH, 2-BuOH, and EtOH). D) Radiation pattern in 3D polar coordinate. E) Comparison
of simulated and measured radiation pattern on E- and H-planes. Co for co-polarization and X for cross-polarization. F) Maximum realized gain at different resonaces
as a function of nanomaterial resistance. G) Electric field distribution on the surface of the Ant-nose at three different resonances.

Y. Dang et al. Sensors and Actuators: B. Chemical 419 (2024) 136409 

9 



Data availability

Data will be made available on request.

Acknowledgements

The work is supported by the Norwegian University of Science and
Technology (NTNU).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.snb.2024.136409.

References

[1] Z. Li, R. Paul, T. Ba Tis, A.C. Saville, J.C. Hansel, T. Yu, J.B. Ristaino, Q. Wei, Non-
invasive plant disease diagnostics enabled by smartphone-based fingerprinting of
leaf volatiles, Nat. Plants 5 (2019) 856–866.

[2] P. Cui, G. Schito, Q. Cui, Voc emissions from asphalt pavement and health risks to
construction workers, J. Clean. Prod. 244 (2020) 118757.

[3] K. Liu, C. Zhang, Volatile organic compounds gas sensor based on quartz crystal
microbalance for fruit freshness detection: a review, Food Chem. 334 (2021)
127615.

[4] L. Guo, T. Wang, Z. Wu, J. Wang, M. Wang, Z. Cui, S. Ji, J. Cai, C. Xu, X. Chen,
Portable foodfreshness prediction platform based on colorimetric barcode
combinatorics and deep convolutional neural networks, Adv. Mater. 32 (2020)
2004805.

[5] T. Bruderer, T. Gaisl, M.T. Gaugg, N. Nowak, B. Streckenbach, S. Muller,
A. Moeller, M. Kohler, R. Zenobi, On-line analysis of exhaled breath: focus review,
Chem. Rev. 119 (2019) 10803–10828.

[6] Y. Geng, M.A. Ali, A.J. Clulow, S. Fan, P.L. Burn, I.R. Gentle, P. Meredith, P.
E. Shaw, Unambiguous detection of nitrated explosive vapours by fluorescence
quenching of dendrimer films, Nat. Commun. 6 (2015) 8240.

[7] Z.-F. Zhang, X. Zhang, X.-M. Zhang, L.-Y. Liu, Y.-F. Li, W. Sun, Indoor occurrence
and health risk of formaldehyde, toluene, xylene and total volatile organic
compounds derived from an extensive monitoring campaign in harbin, a megacity
of china, Chemosphere 250 (2020) 126324.
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Organic transistor based on cyclopentadithiophene-benzothiadiazole
donor–acceptor copolymer for the detection and discrimination between multiple
structural isomers, Adv. Funct. Mater. 29 (2019) 1808188.

[41] M.M. Ali, N. Hashim, S. Abd Aziz, O. Lasekan, Principles and recent advances in
electronic nose for quality inspection of agricultural and food products, Trends
Food Sci. Technol. 99 (2020) 1–10.

[42] S. Tiwari, A. Kate, D. Mohapatra, M.K. Tripathi, H. Ray, A. Akuli, A. Ghosh,
B. Modhera, Volatile organic compounds (vocs): biomarkers for quality
management of horticultural commodities during storage through e-sensing,
Trends Food Sci. Technol. 106 (2020) 417–433.

[43] D. Zhu, X. Ren, L. Wei, X. Cao, Y. Ge, H. Liu, J. Li, Collaborative analysis on
difference of apple fruits flavour using electronic nose and electronic tongue, Sci,
Hortic 260 (2020) 108879.

[44] L. Wu, J. He, G. Liu, S. Wang, X. He, Detection of common defects on jujube using
vis-nir and nir hyperspectral imaging, Postharvest Biol. Technol. 112 (2016)
134–142.

[45] U.L. Opara, P.B. Pathare, Bruise damage measurement and analysis of fresh
horticultural produce—a review, Postharvest Biol. Technol. 91 (2014) 9–24.

[46] R. Dhital, P. Joshi, N. Becerra-Mora, A. Umagiliyage, T. Chai, P. Kohli,
R. Choudhary, Integrity of edible nano-coatings and its effects on quality of
strawberries subjected to simulated in-transit vibrations, LWT 80 (2017) 257–264.

[47] T. Fadiji, C. Coetzee, P. Pathare, U.L. Opara, Susceptibility to impact damage of
apples inside ventilated corrugated paperboard packages: effects of package
design, Postharvest Biol. Technol. 111 (2016) 286–296.

[48] X. Lu, G. Meng, W. Jin, H. Gao, Effects of 1-mcp in combination with ca application
on aroma volatiles production and softening of ‘fuji’apple fruit, Sci. Hortic. 229
(2018) 91–98.

[49] C. Besada, A. Salvador, S. Sdiri, R. Gil, A. Granell, A combination of physiological
and chemometrics analyses reveals the main associations between quality and

Y. Dang et al. Sensors and Actuators: B. Chemical 419 (2024) 136409 

10 

https://doi.org/10.1016/j.snb.2024.136409
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref1
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref1
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref1
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref2
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref2
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref3
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref3
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref3
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref4
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref4
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref4
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref4
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref5
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref5
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref5
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref6
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref6
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref6
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref7
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref7
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref7
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref7
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref8
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref8
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref8
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref8
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref9
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref9
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref9
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref9
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref10
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref10
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref10
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref11
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref11
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref11
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref11
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref12
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref12
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref13
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref13
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref13
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref14
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref14
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref14
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref15
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref15
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref15
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref15
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref16
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref16
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref16
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref17
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref17
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref17
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref17
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref18
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref18
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref18
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref19
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref19
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref19
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref20
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref20
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref20
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref21
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref21
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref21
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref22
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref22
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref22
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref23
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref23
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref23
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref24
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref24
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref24
https://doi.org/10.1109/JSEN.2013.2242464
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref26
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref26
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref26
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref26
https://doi.org/10.1109/TMTT.2022.3199242
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref28
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref28
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref29
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref29
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref29
https://doi.org/10.1021/ja200244s
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref31
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref31
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref31
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref32
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref32
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref32
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref33
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref33
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref33
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref34
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref34
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref34
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref35
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref35
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref35
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref36
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref36
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref37
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref37
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref37
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref38
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref38
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref38
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref39
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref39
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref39
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref40
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref40
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref40
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref40
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref41
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref41
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref41
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref42
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref42
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref42
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref42
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref43
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref43
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref43
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref44
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref44
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref44
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref45
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref45
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref46
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref46
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref46
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref47
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref47
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref47
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref48
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref48
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref48
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref49
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref49


ripening traits and volatiles in two loquat cultivars, Metabolomics 9 (2013)
324–336.

[50] E.G. Vilar, M.G. O’Sullivan, J.P. Kerry, K.N. Kilcawley, Volatile organic compounds
in beef and pork by gas chromatography-mass spectrometry: a review, Sep. Sci. 5
(2022) 482–512.

[51] A. Morales-Fernandez, M. Fernandez-Barciela, F. Isasi-Vicente, F. Martin-
Rodriguez, P.J. Tasker, Dual-band class j power amplifier at 2.45 and 5.8 ghz for
uavs communications, IEEE Access 10 (2022) 48673–48680.

[52] Z.X. Xia, K.W. Leung, M.W.K. Lee, N. Yang, Miniature dual-band meander-line
monopole chip antenna with independent band control, IEEE, Antennas Wirel.
Propag. Lett. 18 (2019) 1873–1877.

[53] W. Stevers, A. Schlegel, P. Chatterjee, J. Opperman, J.A. Nanzer, Direction-of-
arrival estimation using a low-cost, portable, software-defined-radio-based phase
interferometry system, IEEE Antennas Propag. Mag. 61 (2019) 78–84.

Yu Dang received the B.S. degree in microwave technology and the M.S. degree in mi-
crowave technology from the Harbin Institute of Technology, in 2017 and 2019, respec-
tively. He is currently pursuing his PhD degree under the supervision of Prof. Cheffena at
the Norwegian University of Science and Technology (NTNU), Norway. His research in-
terests include 5 G antenna sensor, E-nose, metasurface-based microwave imaging, and
MIMO antenna.

Yenugu VeeraManohara Reddy is an Assistant Professor in the Department of Chemistry
at Sri Venkateswara College, University of Delhi. He earned his Ph.D. in Chemistry from Sri

venkateswara University, specializing in Material Chemistry, Electrochemistry, and En-
ergy Storage Applications. During his postdoctoral tenure at Chung Ang University, South
Korea, he played a pivotal role in the project "Development of MXene-based nano-
biosensors for the detection of influenza virus." Dr. Reddy’s international exposure extends
to his position as a Postdoctoral Researcher at the Norwegian University of Science and
Technology (NTNU), Norway, where he focused on developing flexible 5 G antenna sensor
arrays and inkjet-printed MXene electrodes. Additionally, he served as a Research Assis-
tant Professor at Gachon University, South Korea, contributing to the development of
MOFs and boron nitride nanotubes. Dr. Reddy’s diverse research interests encompass
wearable electrochemical biosensors, nanosensors, disease diagnostics, and molecular
diagnostics. His prolific publication record includes numerous research papers in high-
impact journals.

Michael Cheffena received the M.Sc. degree in electronics and computer technology from
the University of Oslo, Oslo, Norway, in 2005, and the Ph.D. degree from the Norwegian
University of Science and Technology (NTNU), Trondheim, Norway, in 2008 In 2007, he
was a Visiting Researcher at the Communications Research Center, Ottawa, ON, Canada.
From 2009–2010, he conducted a postdoctoral study at the University Graduate Center,
Kjeller, Norway, and the French Space Agency, Toulouse, France. He is currently a Full
Professor at NTNU, Gjøvik, Norway. His research interests include the modeling and
prediction of propagation radio channels, signal processing, medium access control pro-
tocol design, antenna sensors, and sensor systems.

Y. Dang et al. Sensors and Actuators: B. Chemical 419 (2024) 136409 

11 

http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref49
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref49
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref50
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref50
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref50
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref51
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref51
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref51
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref52
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref52
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref52
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref53
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref53
http://refhub.elsevier.com/S0925-4005(24)01139-0/sbref53

	Facile E-nose based on single antenna and graphene oxide for sensing volatile organic compound gases with ultrahigh selecti ...
	1 Introduction
	2 Experimental section
	2.1 Fabrication and measurement of antenna
	2.2 Sensitive nanomaterial coating
	2.3 VOC sensing with ant-nose

	3 Results and discussion
	3.1 Discrimination of individual VOCs including isomers
	3.2 Discrimination of VOC isomer mixture
	3.3 Food quality measurement with Ant-nose
	3.4 Ant-nose communication stability during sensing

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supporting information
	References


